CHAPTER 7: POLYNOMIAL

1. Both (x-2) and $\left(x-\frac{1}{2}\right)$ are the factors of the polynomial px^2+5x+r , calculate and write the relation between p and r.

Ans. Let, $f(x) = Px^2 + 5x + r$ Zero of the polynomial (x - 2) is 2 $\therefore x - 2 = 0$ or, x = 2Zero of the polynomial $\left(x - \frac{1}{2}\right)$ is $\frac{1}{2}$, $\therefore x - \frac{1}{2} = 0$ or, $x = \frac{1}{2}$ $\therefore (x - 2)$ and $\left(x - \frac{1}{2}\right)$ are the factors of f(x) $\therefore p(2)^2 + 5(2) + r = 0$ or, 4p + r = -10again, $p\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) + r = 0$ or, $\frac{p}{4} + \frac{5}{2} + r = 0$ or, p + 4r = -10 $\therefore 4p + r = p + 4r$ or, 3p = 3r or, p = r

2. Find the values of a and b if $x^2 - 4$ is a factor of the polynomial $ax^4 + 2x^3 - 3x^2 + bx - 4$. Ans. Let, $f(x) = ax^4 + 2x^3 - 3x^2 + bx - 4$

: (x^2-4) is a factor of f(x): (x-2) and (x+2) both are factors of f(x): f(2)=0 and f(-2)=0if f(2)=0 then 16a+16-12+2b-4=0 or, 16a+2b=0 or, 8a+b=0Again, if f(-2)=0 then 16a-16-12-2b-4=0 or, 16a-2b=32 or, 8a-b=16

$$8a + b = 0$$

$$8a - b = 16$$

(+), 16a = 16
or, a = 1

$$\therefore 8(1) + b = 0 \text{ or, } b = -8$$

$$\therefore a = 1, b = -8$$

3. If the two polynomials $x^3 + 2x^2 - px - 7$ and $x^3 + px^2 - 12x + 6$ are divided by (x+1) and (x-2) respectively then the remainders R_1 and R_2 are obtained respectively and if $2R_1 + R_2 = 6$, then find the value of p.

Ans. Let, $f(x) = x^3 + 2x^2 - px - 7$ and $g(x) = x^3 + px^2 - 12x + 6$ If f(x) and g(x) are divided by (x + 1) and (x - 2) then remainders will be R_1 and R_2 . $\therefore f(-1) = (-1)^3 + 2(-1)^2 - p(-1) - 7 = R_1$ or, $-1 + 2 + p - 7 = R_1$ or, $p - 6 = R_1$ Again, $g(2) = 2^3 + p(2)^2 - 12(2) + 6 = R_2$ or, $8 + 4p - 24 + 6 = R_2$ or, $4p - 10 = R_2$ Again, $2R_1 + R_2 = 6$ or, 2(p - 6) + 4p - 10 = 6or, 6p = 28or, $p = \frac{28}{6}$ or, $p = \frac{14}{3} = 4\frac{2}{3}$

 \therefore The value of p is $4\frac{2}{3}$.